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ABSTRACT

Statistical procedures for shock models and wear processes are
considered in this paper. We show that independent gamma-
Dirichiet priors are conjugate priors when sampling from these
shock models. Bayes rules given the observations are computed.
In particular, we calculate the Bayes estimates of the survival
probabilities for these models. We show consistency of the
posterior distribution as well as weak convergence of the
centered and suitably rescaled posterior processes.
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BAYESIAN NONPARAMETRIC STATISTICAL INFERENCE

FOR SHOCK MODELS AND WEAR PROCESSES

by

Albert Y. Lo

1. INTRODUCTION AND SUMMARY

Let a device be subject to shocks occurring randomly in time accord-

ing to a homogenous Poisson point process N - {N(t) ; t c R} with

intensity A . The i th shock causes a random amount of damage X,

i - 1, ..., n, ..... The random damages are assumed to be independent

and identically distributed as F , where F is a distribution function

supported by [0,-) . (This implies damages are never negative, also

note that the results in Section 2 do not depend on the support of F .)

This shock model have been studied by Esary, Marshall and Proschan (1973),

Barlow and Proschan (1975), among others. The analogy of the shock model

in risk and acturial analysis has been given by BUhlmann (1970, Chapter 2).

We consider Bayesian nonparametric procedures for the shock model and

assume that the reader is familiar with the results in Ferguson (1973). The

prior distribution we use for (AF) is the "independent gamma-Dirichlet"

prior. By this we mean that A has a gamma distribution with parameter

y and e , denoted by UY,8(d) F has a Dirichlet distribution with

parameter a , denoted by Pa(dF) , and A and F are independent. We

write (A,F) U T o x P and find that the posterior distribution of (A,F)

given the Poisson process up to time T and X 1 ' "'. X(T) is again an

independent gamma-Dirichlet distribution, namely, U y+N(T),+T x P
+ xi

where the summation is from one to N(T) and 8x denotes the probability

measure degenerate at x
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The asymptotic properties of the posterior distribution is considered

and it is shown that the posterior limiting law of the parameters centered

and suitably rescaled is Gaussian.

A parameter of primary interest is the survival probability, which

is the probability that the device survives beyond time t We calculate

the Bayes estimate for this parameter.

I

I
I
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2. THE PRIOR AND POSTERIOR DISTRIBUTIONS

Throughout this paper, we assume that the damages X1, ... , X, ...

caused by the shocks are independent and identically distributed random

variables having distribution F and that the shock process

NT - {N(t) ; t e [0,TJ is a Poisson process with parameter A which

is independent of the damages. The observables are therefore NT and

XT - (x l , ... , NT)) •

We formalize the above assumptions as follows: for each measurable

partition Al, ..., A of [0,T] and each collection Ci,C2 , ... of

Borel sets on the real line, the joint distribution of NT and XT for

given (X,F) is determined by

SPXF{NT(Aj) = kj ; J - 1, ... , , i e C i -1, ... , N(T))

(2.1) k N(T)

e- n * -H F(C
l i l

where NT(Aj) is the number of shocks in A , m is the Lebesque

measure and ki t ..., kI are nonnegative integers with

1 kj = N(T)

Using the idea of conjugate priors, we let X -U where Uy,8 y,B

is the gamma distribution with mean y/e and variance y/02 and let

F - P where PM is the Dirichlet distribution of F with parameter

a where a is the finite measure on the reals. With the additional

assumption that A and F are independent, we have the independent

gamina-Dirichlet distribution U x P C of (X,F)
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We need the following notations to prove the main theorem. Let

QX be the distribution of the observations given X , QF the distribution

of the observations given F and Q the marginal distribution of the

observations. The characterizations of these distributions via finite

dimensional sets are given in the appendix. We are ready to present the

following

Theorem 2.1:

Given NT and XT , the (posterior) distribution of

(i) X is Uy+N(T)e+T

(ii) F is P N(T) and

Mi l I xi

(iii) X and F are independent.

Proof:

Note that according to (2.1), given (A,F) , the conditional dis-

tribution of NT and XT  given N(T) and XT is independent of (X,F)

Thus {N(T),XT } is a set of sufficient statistics for the family of model

distributions I : (X,F) C R+ ® Thus, we can treat the reduced

problem and hence, (2.1) becomes

PX,F{N(T) - k , Xi  C ; i-, ... , N(T)}

(2.1') -XT k k
= k.) F(Ci)•

i:l

To prove (i), we first hold F fixed (that is given F). We shall show

that the posterior distribution of A given N(T) and XT is
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Uy+N(T),8+T(d) , which is independent of F We need the following

notations.
k

Let A - {N(T) - k} and C - n Ci  According to the definition
i-i

of conditional distributions, we have to check that for all B c 5 , for

all such A's and for all such C's , the following equality holds

ff U +N(T),+T (B)QF(dN(T)Bd)'fP ,F(A x C)UO (dX)

k
where QF is given by (A.1). Since QF(C) - n F(Ci ) is cancelled

i-l

out in both sides given F , we need only check that

f U y+N(T),+T(B)QF(dN(T)) -f PX,F(A)U Y,(dX)
A B

But this is well known since it says that gamma distributions are con-

jugate priors when sampling from Poisson random variables. Thus (i)

holds and given F the posterior distribution of X is independent

of F .

Note that (ii) can be proved similarly. We first hold X fixed,

and check that P N(T) (dF) satisfies the definition of the posterior

i-l

distribution of F given NT ' , and X . We need to check if the

following equality holds for all D c A , all A's and all C's

where Q. is given by (A.1)

ff P T) (D)Qx(dN(T),dx) fPA F(A x C)P (dF)
A -T a D

i-ilx
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-AT k
Since QA(A) = k! is cancelled out in both sides, we need only to

check if

f k (D)QA(dx) - fPAF(C)Po(dF).

i- 1xi

But then this is true by Ferguson (1973, Theorem I of Section 3).

We have also shown that given A , the posterior distribution of F

is independent of A , thus (iii) is true.1i

II

1
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3. LIMITING DISTRIBUTION

The consistency of the posterior distributions is well known. A

general proof of this phenomenon is given by Doob (1949) who uses martingale

methods to obtain the result that the posterior distribution converges to

the distribution degenerate at the true parameter under which the sample

is actually drawn, for almost all true parameters. The delicate problem

of the classification of the true parameters under which consistency holds

is treated by many authors in various cases. In particular, if the

parameters are discrete distribution functions then the convergence holds

for all true parameters lying in the support of the so-called tail free

prior probabilities, see Freedman (1963) and Fabius (1964). Berk (1970)

investigates this problem in the dominated case.

In this section, we would rather search for the limiting posterior

distribution for the parameters. Note that in the parametric case,

this problem has been considered by many authors. See LeCam (1963),

or more recently, Walker (1969) and Dawid (1970). Our problem is non-

parametric in nature and our results are based on a theorem of Lo

(1978a).

We denote the "true" values of the intensity X and the damage

distribution by X0 and F0 respectively. Thus, PX0,F0  is the true

probability distribution of the observations. We denote the "posterior

random variable" X and the "posterior Dirichlet process" F given

observations up to time T by AT and FT  respectively. Thus,

a.s. I XOF]
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(XTFT) Uy+N(T),+T x P N(T)

The following proposition shows the consistency of the posterior

distributions.

Proposition 3.1:

The posterior distribution of X converges to the distribution

degenerate at X0  and the posterior distribution of F converges to

the distribution degenerate at F0 , as T goes to infinity,

a.s. [PXFo] .

Proof:

Note that E({T I NT,XT y + N(T) and E X- y+T) T"T =

y + N(T) Because N(T) _, X a.s. via some renewal arguments,

(6 + T) - [POFo]

see Chung (1974, p. 134). Thus the posterior mean of X goes to X0

and the posterior variance of X goes to zero, thus the first assertion

follows. To show the second one, let B ; j - 1, ..., K be a measurable

partition of R , we shall show that a.s. [P F0]

(1) E(FT(Bj) I NT,XT1 - F0 (Bj) ; j 1 1, ..., K

N(T) 

N(T) 

= 
.

K
(2) E (T(B) i )F(B ct+ I N

(T (R) + N(L)T Z. a(R) + N(TT

j , 2- 1, .. ,T
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Then the result will follow via Kallenberg (1976, Theorem 4.3). Now,

(1) holds because as T goes to infinity,

N(T)=(Hi + 6 (Bi)

E(F (Bj N a + i 16i (B F(B 1, K
T TXT a(R) + N(T) " F(B) ; K

(2) holds because for J 0 Z

N (T) N(T)
a( 6 x(B) a(B + 1 dx(B)

T() - a(R) + N(T) T(B) - (R) + N(T) NTX-

N(T)
i- 6x(B

E{FT(Bj)FT(Bt) I NTXT) - a(R) + N(T) E{FT(BX) INT,X

N(T)
(B) + 6 x (B )

a(R) + N(T) E{FT(Bj) I NT,X--

N T) N(T)
a(B + x (Ba) I (B)+ 1 6 x(B)

+ ________ i-I.
+ a (R) + N(T) a (R) + N(T)

a (B4) + N 6 ( B (B) + N 6 (BH)i- i f\ i-l xi

(a%(R) + N(T))(a(R) + N(T) + 1)

NIT) N(T)

a(Bj) + N. 6 (B) (t) + N(T 6 (B

a(R) + N(T) a(R) + N(T)

j 0 Z , j 1 =, ... , K.

The case for j I t can be proved similarly. 11
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In the following, we shall prove that centered and properly rescaled,

the posterior joint distribution of the parameters (X,F) converges

weakly to a Joint Gaussian distribution, a.s. PXoF 0  We let F

be distributions on [0,1] . Define

cl(t) + 1-1) 6 x (t))
X(t) - AN(T) F (t) - (1) +(T ; t E [0,11

and

Let W , t C [0,11 be the Brownian bridge subject to a change of time

by F0 , i.e.,

W 0 (t) - 0 , t C [0,11

E{Wo(t) - WO(s)} - {Fo(t) - F0 (s)}{1 - F0 (t) + F0 (s)} , s < t

Let Y be a centered normal random variable with variance X 0 Then

Theorem 3.1:

If is continuous, a.s. P O'FO]

(Y ,XT.)) -L (Y,Wo(.)) when T -

where Y and W0(.) are independent.

K.j
. - I I . -



Proof:

Because YT and XT(.) are independent, we only need to show

(1) YT -L Y and (2) XT() L-- W0 () a.s. PXO0Fo] . To show (l),

let 9I,- N : N(T) - XOT  . This set is of Pl0F probability 1; see

previous arguments. Our assertion will follow if we show that deleting

a P -null set and for all N c 1  and all (TI ,T n -,

we have YT -L N(0'O) as n - . See Billingsley (1968, p. 16).
n

Thus we pick any N c l hold N fixed and then let Tn  be any sequence

of positive reals that goes to infinity. We shall show that Y L--L-B-N(O'Xo )

N(Tn)  
n

Note that YT L I (Xi - EXi) where X j - 0,1, ..., N(T n
n i=O

are independent gamma random variables with distributions U 8i,+Tn"

respectively with y0 M Y , -i I ; 1 < i < N(T n) . Thus, the central

limit theorem for triangular array applies and (1) follows.

(NfT) 
a

We show (2) similarly. Let f2 - -N(T) ,0 X il( -F

This set is of PA0,F0 probability 1, see Proposition 3.1. Deleting a

PA0,F0 - null set, fix (N,X1, ... , Xn , ...) C 92 and let Tn  be a sequence
L

of positive reals that goes to infinity. We need to show XT - W0 ( )
n

see Billingsley (1968, p. 16). But then this is proved in Example 1, Part II

of Lo (1978). Thus a.s. [P)0F] , (,XT(.)) L'-.-(Y,Wo , ( .)) , where

Y and W0 (.) are independent. II

The following corollary provides an asymptotic Bayesian simultaneous

confidence band for the continuous true distribution functions.

I
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Corollary 3.1:

Under the assumptions of Proposition 3.1, we have a.s. PXoF]0

{ X "(lJ+le
2 j 2 x2

limP sup XT(t) > A - 2 i 22 e >
T- <t< J-1

lim sup XT(t) > A a e -2 •0

T- Oct<l

Proof:

These are well know consequences of Theorem 3.1. For detail

arguments, see Billingsley (1968, p. 142).I1

. ....... ... ...
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4. APPLICATIONS

Let f be a real valued integrable (or positive) function of (A,F)

then the Bayes rule given the observations with respect to a quadratic

type loss function is E(f(X,F) I NT.X } • For different standard

functions of F , the Bayes rules have been computed in Ferguson (1973).

" - -At k
Our concern here is the survival probability P(t), (A(t) - Pk " e (At)

k1O

where Pk is the probability that the device survives k shocks for the

period [O,t] . The Pk is a deterministic function of k and the

capacity or threshold of the device. Thus R(t) is the probability that

the device survives the period (O,t] . We consider two cases.

Case (1):

In the cumulative damage model, the k th shock is survived by the

device if X1 + ..- + X.k does not exceed the capacity or threshold y

of the device. Note that in this case Pk = P{X 1 + ... + Xk ' y I N(t) - k}.

This model has been considered by Cox (1962) and Barlow and Proschan (1975)

among others.

Case (2a):

k k
Pk i P{X i y } = aI F(y1) • This represents the case where

IL i-I i1l

there is a threshold which changes after each shock occurs and yl' "' Yk

are the successive threshold levels. This model is discussed by Esary

et al., (1973).

0
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Case (2b):

- k
Pk F(y)} This is a special case of (2a) with

Yl a Y2 . Yk y , a fixed threshold level.

To compute our Bayes rule for the survival probability, let the

loss function be

L(R.H)- f (R(t) - H(t))W(dt)3+

where W is a totally finite measure on [0,.) . Thus, the Bayes

rule with respect to this loss function will be, for each t

R(t) - E((t) I NT,XT)

Note that E{H(t) I NT,XT }  can be calculated using the following properties
for the posterior distribution of the parameters.

Property (la).:

E{e.Xt Xk I TT - r(Y +N(T) +k) (e+1 +t)k(e e + T yNTI r(Y + N(T)) (8 + T + t 0 + T + t)"

Proof:

This is a consequence of Theorem 2.1.

Property (lb):

EF(k)(y) I N - +
-

+NT +k k ) a+Nf) +J1 1
___________________ i-(yki x 6Idi*f f a +- N1- (uj -1 a e)TT) + 9a U 1
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Proof:

This follows from Theorem 2.1 and repeated applications of Lemma 1

in Lo (1978b).

Property (1c)

N(T) J-1
k  1 l k  k I +  x + 6 (du)

E i F(yi) I T f f I i 1 ii1

0TXT f f i a(R+ ) + N(T) + j - I

Proof:

This is from Theorem 2.1 and an application of Lenma 1 in Lo (1978b).

Property (ld).:

E~ f k ~ y ) I - r ( c & ( R ) + N ( T ) } r l ( y ) + ) 1 1( y )

E IF () NN(T) }
r{w(R+ ) +N(T) + k}r (y) + 1 6 (y)

iml Xi

Proof:

This is the kth moment of beta random variables. Now, it is easy

to see that

E{i(t) I N ,XY

-t k k
etA I NT,  by the monotone convergence theorem

k-OO
* k- E{P NT,X ~ *EetAk I .,,X

since Pk depends on F only and the fact that under the posterior

distribution, F and A are independent.

S



16

k-O E~~k)(y I NT~ E.e NT, L- in Case (1)

I k
E 1F N E tX in case (2a)

- 1 EJFk(y) I NTT E e-tlk I NX " k in Case (2b),
k-O

and the conditional expectations are given by Property (la), (ib), (ic)

and (id).

4.1 The Case of Random Threshold

Suppose there is no practical way to inspect the device to determine

its threshold y or y '... Yk .... The threshold must be regarded

as a random variable. We let y -G(dy) and in case of y' "" Yk

we let these be independent and identically distributed as G . The

distribution function G is a given threshold distribution for the device.

Of course, it might be that yi Gi(dyi) ; i - i .... , k and Yi's

are independent. But this case can be treated similarly and we omit the

details here. It is not difficult to see that Case (I), Case (2a) and

Case (2b) become

Case (1'):

Pk fF(k) (y)G(dy)

Case (2a'):

k * ni F(y) k G(dy d

and
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Case (2b'):

Pk = f Fk(y)G(dy)

0

Now it is easy to see, using Fubini's theorem, that in this model,

~F (k) (y)G(dy) N TN.TX if + F(k)(y) I N T'XT G(dy)

k k
.J .- nJE F(yi) I T s GT,

S 0 Ii iI

M44

f . ... f E 1 F(yi  N TXT 1 G(dy i)
0 0 il iml

E F1'(y)G(dy) N T'- -f + Fk(y) I N T X+4(dy)

and the integrands at the right sides are available in Property (ib), (ic)

and (id).

Now9
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APPENDIX

Proposition 1:

QF{NT(Aj) = , j - 1, . ; C Ci 1 1, ... , N(T))

(A. 1) kj
(.1) r(_ + N(T))I \ )N(T) L m (A) N(T)

r(Y (6) + 1 2 k. F(Ci)

Qx {N T(A ) = k j , J , , .. .z X i  Ci  , 1 1 , ..., N(T)}

(A.2) XT N(T) m (A) f N(T) a+ 1 (dx )

eT OAT) ~ f(dx)L
=kj! "N(T) a(R) + i- 1

n ¢

Q{NT(Aj) k j - 1, ..., x ; X i  Ci , i 1, ..., N(T)}

[N( i-i 6i
(A.3) r(+N(T)) ( 1 )N (T) I J(A ) N(T) + X (dxi)

N~Y) 8 +T e +T J- N(T 1 - a(R) + i-i1J~l kj [ N(T) l

TC'

Proof:

(A.1) is obtained by integrating (2.1) with respect to U ,8. To

show (A.2) and (A.3), we first integrate (2.1) with respect to P anda

U x P respectively and then an application of Le- 1 in Lo (1978b)

concludes the proof. 11


